Guazuma ulmifolia Lam. Decreases Oxidative Stress in Blood Cells and Prevents Doxorubicin-Induced Cardiotoxicity

Author:

dos Santos Jéssica Maurino1,Alfredo Tamaeh Monteiro1,Antunes Katia Ávila1ORCID,da Cunha Janielle da Silva Melo1,Costa Edna Márcia Almeida2,Lima Emerson Silva2ORCID,Silva Denise Brentan3,Carollo Carlos Alexandre3ORCID,Schmitz Wanderlei Onofre4ORCID,Boleti Ana Paula de Araújo1,dos Santos Edson Lucas1ORCID,de Picoli Souza Kely1ORCID

Affiliation:

1. Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Dourados, MS, Brazil

2. Faculty of Pharmaceutical Sciences, Federal University of Amazonas, Manaus, AM, Brazil

3. Laboratory of Natural Products am Mass Spectrometry, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil

4. University Hospital, Federal University of Grande Dourados, Dourados, MS, Brazil

Abstract

Doxorubicin (DOX) is an efficient chemotherapeutic agent, but its clinical application is limited by its cardiotoxicity associated with increased oxidative stress. Thus, the combination of DOX and antioxidants has been encouraged. In this study, we evaluated (I) the chemical composition and antioxidant capacity of aqueous extracts from Guazuma ulmifolia stem bark (GUEsb) and leaves (GUEl) in 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging, 2,2-azobis(2-amidinopropane) dihydrochloride- (AAPH-) or DOX-induced lipid peroxidation inhibition in human blood cells, and intracellular reactive oxygen species (ROS) quantification using the fluorescent probe dichloro-dihydro-fluorescein diacetate (DCFH-DA) in K562 erythroleukemia cells incubated with GUEsb and stimulated with hydrogen peroxide; (II) the viability of K562 cells and human leukocytes treated with GUEsb in the absence or presence of DOX using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay; (III) the acute toxicity of GUEsb; and (IV) the cardioprotective effect of GUEsb in C57Bl/6 mice treated with DOX. The chemical composition indicated the presence of flavan-3-ol derivatives and condensed tannins in GUEsb and glycosylated flavonoids in GUEl. GUEsb and GUEl showed free-radical scavenging antioxidant activity, antihemolytic activity, and AAPH- as well as DOX-induced malondialdehyde content reduction in human erythrocytes. Based on its higher antioxidant potential, GUEsb was selected and subsequently showed intracellular ROS reduction without impairing the chemotherapeutic activity of DOX in K562 cells or inducing leukocyte cell death, but protected them against DOX-induced cell death. Yet, GUEsb did not show in vivo acute toxicity, and it prevented MDA generation in the cardiac tissue of DOX-treated mice, thus demonstrating its cardioprotective effect. Taken together, the results show that GUEsb and GUEl are natural alternatives to treat diseases associated with oxidative stress and that, in particular, GUEsb may play an adjuvant role in DOX chemotherapy.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3