Research on the Feature Selection of Rolling Bearings’ Degradation Features

Author:

Li Yaolong1ORCID,Li Hongru1ORCID,Wang Bing2ORCID,Yu He1ORCID,Wang Weiguo1

Affiliation:

1. Army Engineering University, No. 97 Heping West Road, Shijiazhuang 050003, China

2. Shanghai Maritime University, Shanghai 200135, China

Abstract

The bearings’ degradation features are crucial to assess the performance degradation and predict the remaining useful life of rolling bearings. So far, numerous degradation features have been proposed. Many researchers have devoted to use dimensionality reduction methods to reduce the redundancy of those features. However, they have not considered the properties and similarity of those features. In this paper, we present a simple way to reduce dimensionality by classifying different features based on their trends. And the degradation features can be classified into two subdivisions, namely, uptrends and downtrends. In each subdivision, there exists visible trend similarity, and we have introduced two indexes to measure this similarity. By selecting the representative features of the subdivision, the multifeatures can be dimensionality reduced. Through the comparison, the root mean square and sample entropy are two good representatives of uptrend and downtrend features. This method gives an alternative way for dimensionality reduction of the rolling bearings’ degradation features.

Funder

University of Cincinnati

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3