Adaptive Bacteria Colony Picking in Unstructured Environments Using Intensity Histogram and Unascertained LS-SVM Classifier

Author:

Zhang Kun1,Fei Minrui1,Li Xin1,Zhou Huiyu2ORCID

Affiliation:

1. School of Mechatronic Engineering & Automation, Shanghai University, M8 Building, 149 Yanchang Road, ZhaBei District, Shanghai 200072, China

2. The Institute of Electronics, Communications and Information Technology, Queen’s University Belfast, Belfast, UK

Abstract

Features analysis is an important task which can significantly affect the performance of automatic bacteria colony picking. Unstructured environments also affect the automatic colony screening. This paper presents a novel approach for adaptive colony segmentation in unstructured environments by treating the detected peaks of intensity histograms as a morphological feature of images. In order to avoid disturbing peaks, an entropy based mean shift filter is introduced to smooth images as a preprocessing step. The relevance and importance of these features can be determined in an improved support vector machine classifier using unascertained least square estimation. Experimental results show that the proposed unascertained least square support vector machine (ULSSVM) has better recognition accuracy than the other state-of-the-art techniques, and its training process takes less time than most of the traditional approaches presented in this paper.

Funder

National Key Scientific Instrument and Equipment Development Projects

Publisher

Hindawi Limited

Subject

General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3