Investigation of the Interaction Mechanism of Solid Particles under Shock Waves

Author:

Peng Xu1,Wang Shunyao1,Rao Guoning1ORCID,Li Bin1,Chen Wanghua1

Affiliation:

1. School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China

Abstract

To deeply understand the interaction mechanism between the two phases, both shock wave experiments and computational fluid dynamics (CFD) simulations are carried out to study the propagation of shock waves and the dispersion process of solid quartz sand particles. The results show that transmission and reflection occur during the interaction between the shock wave and particle. When the Mach number is 1.53, the incident pressure is 154.6 kPa and the reflected pressure is 342.4 kPa. The transmitted pressure rapidly decays due to the exchange of momentum and energy, the particle front gradually changes from horizontal to mushroom shape, and a rising three-dimensional annular vortex is formed obliquely above the particles due to the entrainment effect. The simulated and experimental results are in good agreement, thereby indicating the validity of the numerical model. In addition, based on the response surface method and a series of experimental data, a mathematical model of the dispersion distance of solid particles under the action of shock waves is proposed. It is beneficial for prediction and scientific research for the development of industrial systems.

Funder

Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3