Identification of a 5-Hydroxymethylation Signature in Circulating Cell-Free DNA for the Noninvasive Detection of Colorectal Cancer

Author:

Liu Hongwei1,Tang Tao2,Zhang Huixian1,Ting Weiren1,Zhou Peng1,Luo Ying1,Qi Huaxing1,Liu Yanmei1,Liu Yongxin1,Zhou Meifang1,Yin Weiguo1,Lin Jinduan1ORCID

Affiliation:

1. Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangdong Qingyuan, China

2. Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangdong Guangzhou, China

Abstract

Background. As a crucial epigenetic modification, DNA 5-hydroxymethylcytosine (5-hmC) plays a key role during colorectal cancer (CRC) carcinogenesis. Nevertheless, the levels of 5-hmC-related genes in the circulating DNA of CRC remain largely unknown. Methods and Results. The GSE81314 dataset from the Gene Expression Omnibus (GEO), which was generated by chemical marking-based low-input shotgun sequencing to detect 5-hmC in circulating cell-free DNA (cfDNA) was used in the present study. The GSE81314 dataset includes data for 8 plasma samples from healthy individuals and 4 plasma samples from CRC patients. The difference in the 5-hmC levels in cfDNA between the CRC group and healthy individuals was analyzed by the differentially expressed genes (DEG) package. Weighted gene coexpression network analysis (WGCNA) was conducted to analyze gene coexpression modules associated with sample characteristics. DEG analysis identified 19 upregulated and 9 downregulated 5-hmC-related genes. WGCNA showed that the pink, purple, and brown modules, which contain 531 genes in total, were significantly correlated with CRC (0.66, 0.61, and -0.59, respectively). We used gene set enrichment analysis (GSEA) software to compare 5-hmC-related genes and pathways between CRC patients and healthy controls. We further performed a protein–protein interaction (PPI) analysis and identified 4 nodes (LCN2, LRG1, S100P, and TACSTD2) that played key roles in the network, and we analyzed the expression of these nodes S100P in the GEPIA database. Consistent with the 5-hmC levels in CRC patient plasma, our external validation results from the GEPIA and UALCAN databases showed that LCN2, LRG1, S100P, and TACSTD2 were highly expressed in CRC tissue compared with controls. The DNA promoter methylation levels of LCN2, LRG1, and S100P were lower in CRC tissue than in normal control tissue. Conclusion. The present findings suggest that abnormality in cell-free DNA hydroxylation in plasma may be associated with CRC. In addition, the 5-hmC levels of LCN2, LRG1, S100P, and TACSTD2 in circulating cfDNA may be used as potential noninvasive markers for CRC.

Funder

Guangzhou Medical University

Publisher

Hindawi Limited

Subject

Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3