Affiliation:
1. College of Mechanical Engineering, Chongqing University, Chongqing 400044, China
2. Huawei Technologies Co., Ltd., Shenzhen 518000, China
Abstract
Machining process is characterized by randomness, nonlinearity, and uncertainty, leading to the dynamic changes of machine tool machining errors. In this paper, a novel model combining the data processing merits of metabolic grey model (MGM) with that of nonlinear autoregressive (NAR) neural network is proposed for machining error prediction. The advantages and disadvantages of MGM and NAR neural network are introduced in detail, respectively. The combined model first utilizes MGM to predict the original error data and then uses NAR neural network to forecast the residual series of MGM. An experiment on the spindle machining is carried out, and a series of experimental data is used to validate the prediction performance of the combined model. The comparison of the experiment results indicates that combined model performs better than the individual model. The two-stage prediction of the combined model is characterized by high accuracy, fast speed, and robustness and can be applied to other complex machining error predictions.
Funder
National Major Scientific and Technological Special Project
Subject
General Engineering,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献