Investigation of Microstructural Damage in Ultrahigh-Performance Concrete under Freezing-Thawing Action

Author:

Gu Chunping12ORCID,Sun Wei3,Guo Liping3ORCID,Wang Qiannan3,Liu Jintao12,Yang Yang12ORCID,Shi Tao12

Affiliation:

1. College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310023, China

2. Key Laboratory of Civil Engineering Structures and Disaster Prevention and Mitigation Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310023, China

3. School of Materials Science and Engineering, Southeast University, Nanjing 211189, China

Abstract

This work aims to investigate the damage in ultrahigh-performance concrete (UHPC) caused by freezing-thawing action. Freezing-thawing tests were carried out on UHPCs with and without steel fibers. Mercury intrusion porosimetry (MIP), scanning electron microscopy (SEM), and X-ray computed tomography (X-ray CT) were applied to detect the microstructure of the UHPC matrix before and after the freezing-thawing tests. The results showed that UHPC possessed very excellent freezing-thawing resistance due to its dense microstructure. After the freezing-thawing action, cracks occurred and were prone to initiate at the sand-paste interface in the UHPC matrix. MIP results also indicated that cracks appeared in the UHPC matrix after the freezing-thawing action. The number of defects that can be seen by X-ray CT increased in UHPC after the freezing-thawing action as well. The mismatch of the thermal expansion coefficients of the aggregate and the paste is considered to be the reason for the cracking at the sand-paste interface. The steel fibers in UHPC inhibited the propagation of cracks in the matrix and improved the freezing-thawing performance of UHPC.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3