Inhibiting Autophagy Pathway of PI3K/AKT/mTOR Promotes Apoptosis in SK-N-SH Cell Model of Alzheimer’s Disease

Author:

Pang Yu1ORCID,Lin Wennan2ORCID,Zhan Lan1ORCID,Zhang Jiawen1ORCID,Zhang Shicun1ORCID,Jin Hongwei1ORCID,Zhang He1ORCID,Wang Xiaoli3ORCID,Li Xiaoming4ORCID

Affiliation:

1. Department of Neurology, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China

2. General Department, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China

3. School of Pharmacy, Qiqihar Medical University, Qiqihar 161000, China

4. The Institute of Medicine, Qiqihar Medical University, Qiqihar 161000, China

Abstract

Alzheimer’s disease is the most common dementia disease characterized by chronic progressive neurodegeneration. The incidence of Alzheimer’s disease is on the rise as the population ages at an accelerating pace. According to epidemiological data, by 2050, the number of Alzheimer’s patients in the United States will be three times higher than that in 2010, and a similar trend is occurring in China. To explore the effect and mechanism of let-7b by detecting the expression level of let-7b in Alzheimer’s disease, fifty patients with Alzheimer’s disease and thirty healthy controls were selected. The expression levels of let-7 families (let-7a, let-7b, let-7c, let-7d, let-7e, let-7f, let-7g, and let-7i) were detected by qPCR. Human neuroblastoma cell SK-N-SH were divided into control group (untreated), model group (treated with Aβ1-40), Aβ1-40+let-7b mimic group (treated with Aβ1-40 and transfected with let-7b mimic), and Aβ1-40+miR-NC group (treated with aβ1-40 and transfected with miR-NC). let-7b expression and cell survival rate were detected by qPCR and CCK-8, and the levels of caspase 3, LC3, beclin-1, PI3K, p-AKT, and p-mTOR were detected by Western blot. let-7b was significantly different between the case group and the control group ( p  < 0.001). CCK-8 showed a significant decrease in cell viability in Aβ1-40 treatment group compared with that in the control group ( p  < 0.01). Overexpression of let-7b significantly reduced the survival rate of the cells, and the expression of LC3II/LC3I and beclin-1 in the cells was significantly reduced by aβ1-40 treatment ( p  < 0.001). let-7b overexpression also inhibited autophagy via reducing the level of LC3II/LC3I and beclin-1 ( p  < 0.001). Aβ1-40 treatment and let-7b overexpression promoted apoptosis by increasing the expression of cleavage caspase 3. Western blot indicated that Aβ1-40 treatment and let-7b overexpression could increase the expression of PI3K, p-AKT, and p-mTOR. let-7b overexpression could inhibit autophagy and promote apoptosis in Alzheimer’s cells by promoting PI3K/AKT/mTOR signaling pathway. PI3K/AKT/mTOR signaling pathway is involved in the imbalance between autophagy and apoptosis.

Funder

Qiqihar Academy of Medical Sciences Clinical Research Fund Project

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3