Simulation and Analysis of Land-Surface Processes in the Taklimakan Desert Based on Noah LSM

Author:

Li Huoqing1ORCID,Mamtimin Ali1ORCID,Ju Chenxiang1ORCID

Affiliation:

1. Taklimakan Desert Meteorology Field Experiment Station of CMA, Institute of Desert Meteorology, China Meteorological Administration, Urumqi 830002, China

Abstract

This study evaluated the Noah land-surface model performance to simulate the land-surface process during different weather conditions in the hinterland of the Taklimakan Desert. This study is based on observation data from the Taklimakan Desert Meteorology Field Experiment Station in 2014. The results illustrated that the energy-exchange process between the land surface and the atmosphere in the drifting desert can be simulated by Noah effectively. However, the effects of soil moisture and latent heat flux were very poor. For sunny days, the soil temperature and heat flux were underestimated significantly in the nighttime and overestimated in the daytime. The simulation results are very good in sand-dust weather. The simulation of heat flux and net radiation is very consistent with the observation during cloudy days. For rainy days, the model can successfully model the diurnal variation of soil moisture, but it has obvious deviations in the net radiation, heat flux, and soil heat flux.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3