A Spherical Micro Satellite Design and Detection Method for Upper Atmospheric Density Estimation

Author:

Zhao Zeyang1,Wang Zhaokui2ORCID,Zhang Yulin12

Affiliation:

1. College of Aeronautics and Astronautics, National University of Defense Technology, Changsha 410073, China

2. School of Aerospace, Tsinghua University, Beijing 100084, China

Abstract

A spherical microsatellite, aimed at technology verification of upper atmospheric density detection and precision orbit determination in low Earth orbit (LEO), has been developed by Tsinghua University and is scheduled to launch in the second half of 2019. In order to reduce the influence of other nonconservative forces, the area-to-mass ratio of the satellite was designed to ensure that the aerodynamic drag of the satellite is more than one to two orders of magnitude greater than the solar pressure perturbation. The influence of the components of the antenna, separation support, and solar cell arrays (SCAs) on the spherical structure for the area-to-mass ratio is reduced by reasonable design of the satellite flight attitude. In addition, a novel method has been developed to estimate and correct the parameters for atmospheric density (correlated to the drag) calculation, using precise orbit data (POD) obtained from an onboard dual-frequency global position system (GPS) receiver. The method is used to obtain the partial derivative of the total acceleration of the satellite to the initial state (position, velocity) and Harris-Priester (HP) density model parameters (antapex and apex density). Further, the least squares estimation method is used to solve the overdetermined linear equations and obtain the change of initial state of the satellite and the HP density model parameters relative to change of the satellite state. The validity of this method has been verified through numerical simulations with the parametric setup of the satellite. The estimated density precision was found to be higher than two to three orders of the initial HP density model with continuous iteration.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3