A Genetic Algorithm Based Multilevel Association Rules Mining for Big Datasets

Author:

Xu Yang1ORCID,Zeng Mingming1,Liu Quanhui1ORCID,Wang Xiaofeng2

Affiliation:

1. School of Computer Science and Engineering, University of Electronic Science and Technology of China, China

2. Institute of Computing Technology, Chinese Academy of Sciences, China

Abstract

Multilevel association rules mining is an important domain to discover interesting relations between data elements with multiple levels abstractions. Most of the existing algorithms toward this issue are based on exhausting search methods such as Apriori, and FP-growth. However, when they are applied in the big data applications, those methods will suffer for extreme computational cost in searching association rules. To expedite multilevel association rules searching and avoid the excessive computation, in this paper, we proposed a novel genetic-based method with three key innovations. First, we use the category tree to describe the multilevel application data sets as the domain knowledge. Then, we put forward a special tree encoding schema based on the category tree to build the heuristic multilevel association mining algorithm. As the last part of our design, we proposed the genetic algorithm based on the tree encoding schema that will greatly reduce the association rule search space. The method is especially useful in mining multilevel association rules in big data related applications. We test the proposed method with some big datasets, and the experimental results demonstrate the effectiveness and efficiency of the proposed method in processing big data. Moreover, our results also manifest that the algorithm is fast convergent with a limited termination threshold.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Multi-Level Association Rule Mining Algorithm Based on NSGA-II for Market Basket Analysis;2023 4th Information Communication Technologies Conference (ICTC);2023-05-17

2. Application of Genetic Algorithm in Numerous Scientific Fields;Genetic Algorithms;2022-10-12

3. An Experiment to Design an Operation and Maintenance System Integrating Apriori Association Rules for a Telecom Platform;Wireless Communications and Mobile Computing;2021-09-30

4. A Survey of Machine Learning for Network Fault Management;Machine Learning and Data Mining for Emerging Trend in Cyber Dynamics;2021

5. Structural Optimization of Ship Lock Heads during Construction Period considering Concrete Creep;Mathematical Problems in Engineering;2020-08-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3