Coordinate Attention Filtering Depth-Feature Guide Cross-Modal Fusion RGB-Depth Salient Object Detection

Author:

Meng Lingbing1ORCID,Yuan Mengya1,Shi Xuehan1,Liu Qingqing1,Zhange Le1,Wu Jinhua1,Dai Ping1,Cheng Fei12ORCID

Affiliation:

1. School of Anhui Institute of Information Technology, Wuhu 241199, China

2. School of Hangzhou Dianzi University, Hangzhou 310018, China

Abstract

Existing RGB + depth (RGB-D) salient object detection methods mainly focus on better integrating the cross-modal features of RGB images and depth maps. Many methods use the same feature interaction module to fuse RGB and depth maps, which ignores the inherent properties of different modalities. In contrast to previous methods, this paper proposes a novel RGB-D salient object detection method that uses a depth-feature guide cross-modal fusion module based on the properties of RGB and depth maps. First, a depth-feature guide cross-modal fusion module is designed using coordinate attention to utilize the simple data representation capability of depth maps effectively. Second, a dense decoder guidance module is proposed to recover the spatial details of salient objects. Furthermore, a context-aware content module is proposed to extract rich context information, which can predict multiple objects more completely. Experimental results on six benchmark public datasets demonstrate that, compared with 15 mainstream convolutional neural network detection methods, the saliency map edge contours detected by the proposed model have better continuity and the spatial structure details are clearer. Perfect results are achieved on four quantitative evaluation metrics. Furthermore, the effectiveness of the three proposed modules is verified through ablation experiments.

Funder

Natural Science Foundation of Anhui Province

Publisher

Hindawi Limited

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3