Affiliation:
1. School of Information Science and Technology, North China University of Technology, Beijing, China
2. School of Electrical and Control Engineering, North China University of Technology, Beijing, China
Abstract
In recent years, deep learning has already been applied to English lip-reading. However, Chinese lip-reading starts late and lacks relevant dataset, and the recognition accuracy is not ideal. Therefore, this paper proposes a new hybrid neural network model to establish a Chinese lip-reading system. In this paper, we integrate the attention mechanism into both CNN and RNN. Specifically, we add the convolutional block attention module (CBAM) to the ResNet50 neural network, which enhances its ability to capture the small differences among the mouth patterns of similarly pronounced words in Chinese, improving the performance of feature extraction in the convolution process. We also add the time attention mechanism to the GRU neural network, which helps to extract the features among consecutive lip motion images. Considering the effects of the moments before and after on the current moment in the lip-reading process, we assign more weights to the key frames, which makes the features more representative. We further validate our model through experiments on our self-built dataset. Our experiments show that using convolutional block attention module (CBAM) in the Chinese lip-reading model can accurately recognize Chinese numbers 0–9 and some frequently used Chinese words. Compared with other lip-reading systems, our system has better performance and higher recognition accuracy.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An Innovative Method to Predict Real Estate Prices Using Convolutional Block Attention Module;2023 4th International Conference on Smart Electronics and Communication (ICOSEC);2023-09-20