Affiliation:
1. School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China
2. Huaiyin Normal University, Huai'an 223001, China
Abstract
Owning to the high processing complexity, the image restoration can only be processed offline and hardly be applied in the real-time production life. The development of edge computing provides a new solution for real-time image restoration. It can upload the original image to the edge node to process in real time and then return results to users immediately. However, the processing capacity of the edge node is still limited which requires a lightweight image restoration algorithm. A novel real-time image restoration algorithm is proposed in edge computing. Firstly, 10 classical functions are used to determine the population size and maximum iteration times of traction fruit fly optimization algorithm (TFOA). Secondly, TFOA is used to optimize the optimal parameters of least squares support vector regression (LSSVR) kernel function, and the error function of image restoration is taken as an adaptive function of TFOA. Thirdly, the LLSVR algorithm is used to restore the image. During the image restoration process, the training process is to establish a mapping relationship between the degraded image and the adjacent pixels of the original image. The relationship is established; the degraded image can be restored by using the mapping relationship. Through the comparison and analysis of experiments, the proposed method can meet the requirements of real-time image restoration, and the proposed algorithm can speed up the image restoration and improve the image quality.
Funder
National Key R&D Program of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献