Bifurcation Analysis and Synchronous Patterns between Field Coupled Neurons with Time Delay

Author:

Zhang Li1,An Xinlei12ORCID,Zhang Jiangang1ORCID,Shi Qianqian1

Affiliation:

1. School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China

2. College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China

Abstract

Neurons encode and transmit signals through chemical synaptic or electrical synaptic connections in the actual nervous system. Exploring the biophysical properties of coupling channels is of great significance for further understanding the rhythm transitions of neural network electrical activity patterns and preventing neurological diseases. From the perspective of biophysics, the activation of magnetic field coupling is the result of the continuous release and propagation of intracellular and extracellular ions, which is very similar to the activation of chemical synaptic coupling through the continuous release of neurotransmitters. In this article, an induction coil is used to connect two HR neurons to stimulate the effect of magnetic field coupling. It is inevitable that time delays can affect the coupling process in the transmission of information, and it should be considered in the coupled model. Firstly, the firing characteristics and bifurcation modes of two coupled HR neurons are studied by using one parameter and two parameters bifurcation. With the increase of propagation delay and coupling gain, the chaotic state of neurons disappears and the high-period window decreases due to the influence of energy transfer between neurons. Then, the synchronization patterns of two HR neurons with different stimulation are analyzed by error diagrams and time series diagrams. It is confirmed that the synchronous pattern has certain regularity and is related not only to the neurons with large stimulation current but also to the time delay and coupling gain. The research conclusions of this article will provide the corresponding theoretical basis for medical experiments.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3