Study on Two-phase Flow Mechanisms in Nanopore Considering Microcosmic Deformation and Dynamic Capillary Force

Author:

Dou Xiangji1ORCID,Lin Cong1,Hong Sujin1,Zhu Pengfei1,Wang An1,Qi Guodong1ORCID

Affiliation:

1. School of Petroleum Engineering, Changzhou University, Changzhou 213164, China

Abstract

Coring experiments show that nanopores are extensively distributed in shale oil reservoirs and tend to be deformed when a significant pressure variation exists, and thus the dynamic capillary force phenomenon and flow mechanisms in nanopores can be significantly changed. To characterize the two-phase flow mechanisms in nanopores influenced by the synergistic effect of microcosmic pore deformation and dynamic capillary force, models based on Gassmann’s theory are established to describe the variations of pore radius and roughness in a dynamic pressure field. And then, innovative methods to quantify the dynamic capillary force phenomenon under comprehensive influence of pore size, roughness, and pressure are developed. Meanwhile, mathematical models, considering the effect of the pore deformation and dynamic capillary force, are furtherly derived to characterize the water-oil two-phase flow behavior for relatively large nanopores in shale oil reservoir, which can be used to investigate the influence of the vital parameters. The results indicate that the dynamic capillary force phenomenon turns out to be more significant when variations of pore structure and pressure are considered simultaneously. Moreover, the pore deformation and dynamic capillary force caused by pressure change can exert remarkable synergistic influence on the transport capacity for typical flow modes. Bulk modulus is one of the key factors to determine the degree of influence. An optimal pressure can be obtained to coordinate the competitive effect of seepage channel and capillary force for water-drive-oil mode with limited driving force. Based on that, emphasis should be placed on pressure control during the shale oil development process. This work theoretically underpins the quantitative characterization and the analysis of two-phase flow in shale reservoirs at the nanopore scale.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Reference33 articles.

1. Molecular dynamics simulations of oil transport through inorganic nanopores in shale

2. Liquid permeability of organic nanopores in shale: Calculation and analysis

3. Numerical simulation of coupled flow of multiple porous media in shale reservoir;Y. L. Su;Oil and Gas Geology,2019

4. An innovative method for the characterization of oil content in lacustrine shale-oil systems: a case study from the middle permian lucaogou formation in the Jimusaer Sag, Junggar Basin;Y. Liu;Marine and Petroleum Geology,2021

5. Microanalysis of Oil Shale of the Leningrad Field

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3