Clinical Application of a Multiparameter-Based Nomogram Model in Predicting Preeclampsia

Author:

Chen Wenyue1ORCID,Sun Sufang1

Affiliation:

1. Department of Obstetrics, Hangzhou Fuyang District First People’s Hospital, Hangzhou 311400, Zhejiang, China

Abstract

Based on single-center data, the related predictive factors of preeclampsia (PE) were investigated, and a nomogram prediction model was established and validated. A retrospective collection of 93 PE patients admitted to our hospital from January 2019 to January 2021 were included in the PE group. In addition, non-PE pregnant women were selected for physical examination during the same period for matching, and 170 normal pregnant women who met the matching conditions were found as the normal pregnancy group. Clinical data of the selected candidates were collected. The risk factors of PE were screened by logistic regression analysis, and the lipopograph prediction model was constructed and verified. Logistic analysis results showed that age (OR = 3.069, 95% CI = 1.233–7.638), prepregnancy BMI (OR = 2.896, 95% CI = 1.193–7.029), vitamin E deficiency (OR = 2.803, 95% CI = 1.134–6.928), 25-(OH)D (OR = 0.944, 95% CI = 0.903∼9.988), PLGF (OR = 0.887, 95% CI = 0.851∼0.924), PAPP-A (OR = 1.240, 95% CI = 1.131∼1.360), and PI (OR = 6.376, 95% CI = 1.163∼34.967) were the independent risk factors for PE prediction ( P < 0.05 ). The ROC curve showed that the AUC of the model for predicting the risk of PE was 0.957 (95% CI: 0.935–0.979), and the specificity and sensitivity were 0.912 and 0.892, respectively. H-L goodness of the fit test showed that there was no statistical significance in the deviation between the actual observed value and the predicted value of the risk in the line graph model (χ2 = 7.001, P = 0.536 ). The bootstrap test was used for internal verification, and the original data were repeatedly sampled 1000 times. The average absolute error of the calibration curve is 0.014, and the fitting degree between the calibration curve and the ideal curve is good. Age, prepregnancy BMI, lack of vitamin E, 25-(OH)D, PLGF, PAPP-A, and PI are independent risk factors for predicting PE. The establishment of a nomogram prediction model based on the above parameters can help identify PE high-risk groups in the early clinical stage and provide a reference for individualized clinical diagnosis and treatment.

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Retracted: Clinical Application of a Multiparameter-Based Nomogram Model in Predicting Preeclampsia;Evidence-Based Complementary and Alternative Medicine;2023-10-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3