Application of Digital Image Based on Machine Learning in Media Art Design

Author:

Wu Ciguli1ORCID

Affiliation:

1. Xi’an Jiaotong University City College, Xi’an, Shanxi 710068, China

Abstract

In digital media art, expressive force is an important art form of media. This paper studies digital images that have the same effect when applied to media art. The research object is media art images, and the application effect of the proposed algorithm is related to the media art images. The development of digital image technology has brought revolutionary changes to traditional media art expression techniques. In this paper, a partial-pixel interpolation technique based on convolutional neural network is proposed. Supervised training of convolutional neural networks requires predetermining the input and target output of the network, namely, integer image and fractional image in this paper. To solve the problem that the subpixel sample cannot be obtained, this paper first analyzes the imaging principle of digital image and proposes a subpixel sample generation algorithm based on Gaussian low-pass filter and polyphase sampling. From the perspective of rate distortion optimization, the purpose of pixel motion compensation is to improve the accuracy of interframe prediction. Therefore, this paper defines pixel motion compensation as an interframe regression problem, that is, the mapping process of the reference image integral pixel sample to the current image sample to be encoded. In this paper, a generalized partial-pixel interpolation model is proposed for bidirectional prediction. The partial-pixel interpolation of bidirectional prediction is regarded as a binary regression model; that is, the integral pixel reference block in two directions is mapped to the current block to be coded. It further studies how to apply the trained digital images to media art design more flexibly and efficiently.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3