Affiliation:
1. College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China
Abstract
How to solve the numerical solution of nonlinear partial differential equations efficiently and conveniently has always been a difficult and meaningful problem. In this paper, the data-driven quasiperiodic wave, periodic wave, and soliton solutions of the KdV-mKdV equation are simulated by the multilayer physics-informed neural networks (PINNs) and compared with the exact solution obtained by the generalized Jacobi elliptic function method. Firstly, the different types of solitary wave solutions are used as initial data to train the PINNs. At the same time, the different PINNs are applied to learn the same initial data by selecting the different numbers of initial points sampled, residual collocation points sampled, network layers, and neurons per hidden layer, respectively. The result shows that the PINNs well reconstruct the dynamical behaviors of the quasiperiodic wave, periodic wave, and soliton solutions for the KdV-mKdV equation, which gives a good way to simulate the solutions of nonlinear partial differential equations via one deep learning method.
Funder
National Natural Science Foundation of China
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献