Conservation Voltage Reduction Strategy for Autonomous Microgrid with Improved Voltage-CurrentDroop-Based Inverter Control Framework

Author:

Jha Sumit Kumar12ORCID,Kumar Deepak1ORCID,Samantaray S. R.3ORCID

Affiliation:

1. Department of Electrical and Electronics Engineering, Birla Institute of Technology, Mesra, Ranchi, India

2. Department of Electrical and Electronics Engineering, Presidency University, Bengaluru, Karnataka, India

3. School of Electrical Sciences, IIT Bhubaneswar, Kansapada, India

Abstract

In a conventional AC distribution system, the conservation voltage reduction (CVR) strategy is widely employed to lower down the voltage of specific load to lower the power consumption. The wide applicability of demand side management (DSM) using CVR in a stand-alone microgrid through VSI-based energy sources is a thrust area, that is, not examined yet and needs to be explored. The fast dynamics and flexible control are the characteristics of the voltage-current droop method which further increases the inertia of the voltage source inverter. For utilizing these advantages of this droop method, it is required to determine the accurate droop gain to properly coordinate the distribution of power among DGs. In this paper, the voltage-current droop method is utilized to carry out the function of DSM, and a modified droop computation method for voltage-current droop is formulated to determine the impedance from initial of the DG point to the downstream end for multifeeder network. As most of the droop control techniques emulate the conventional power grid such as Q-V droop control which reduces voltage with the increase of reactive power, the research prospect is very high in devising the new droop computation method for voltage-current droop for accurate control of power. In addition to it, the work is extended to apply the benefits of voltage-current droop to execute DSM strategy in standalone MG. Moreover, the capability of the proposed estimation of droop parameter is implemented on a standalone 5-bus single-feeder multi-DGs network, and furthermore, the scheme is applied to IEEE-9 bus multifeeder multi-DGs network to show the applicability of the proposed scheme. The simulation results produced from MATLAB/Simulink are compared with the decentralized power-based droop method and conventional voltage-current droop technique to analyse the performance of the devised scheme.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of Islanded Micro-Grid for Radial and Meshed Distribution Networks using Zbus Matrix;2023 IEEE 2nd International Conference on Industrial Electronics: Developments & Applications (ICIDeA);2023-09-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3