Human Myeloma Cell Lines Induce Osteoblast Downregulation of CD99 Which Is Involved in Osteoblast Formation and Activity

Author:

Oranger Angela1,Brunetti Giacomina1ORCID,Carbone Claudia1,Colaianni Graziana1ORCID,Mongelli Teresa1,Gigante Isabella1,Tamma Roberto1,Mori Giorgio2,Di Benedetto Adriana1,Sciandra Marika3ORCID,Ventura Selena3ORCID,Scotlandi Katia3,Colucci Silvia1,Grano Maria1

Affiliation:

1. Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy

2. Department of Clinical and Experimental Medicine, Medical School, University of Foggia, Viale Luigi Pinto 1, 71100 Foggia, Italy

3. CRS Development of Biomolecular Therapies, Laboratory of Experimental Oncology, Orthopaedic Institute of Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy

Abstract

CD99 is a transmembrane glycoprotein expressed in physiological conditions by cells of different tissues, including osteoblasts (OBs). High or low CD99 levels have been detected in various pathological conditions, and the supernatant of some carcinoma cell lines can modulate CD99 expression in OB-like cells. In the present work we demonstrate for the first time that two different human myeloma cell lines (H929 and U266) and, in a less degree, their conditioned media significantly downregulate CD99 expression in normal human OBs during the differentiation process. In the same experimental conditions the OBs display a less differentiated phenotype as demonstrated by the decreased expression of RUNX2 and Collagen I. On the contrary, when CD99 was activated by using a specific agonist antibody, the OBs become more active as demonstrated by the upregulation of Alkaline Phosphatase, Collagen I, RUNX2, and JUND expression. Furthermore, we demonstrate that the activation of CD99 is able to induce the phosphorylation of ERK 1/2 and AKT intracellular signal transduction molecules in the OBs.

Funder

Associazione Italiana per la Ricerca sul Cancro

Publisher

Hindawi Limited

Subject

Immunology,General Medicine,Immunology and Allergy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3