Paeoniflorin Protects H9c2 Cardiomyocytes against Hypoxia/Reoxygenation Induced Injury via Regulating the AMPK/Nrf2 Signaling Pathway

Author:

Yu Wen12,Sun Huang1,Tan Yang1,Zhang Wei1ORCID

Affiliation:

1. Department of Emergency, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, Yunnan, China

2. Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, Yunnan, China

Abstract

Myocardial ischemia/reperfusion (MIR) injury contributes to the exacerbation of heart disease by causing cardiac arrhythmias, myocardial infarction, and even sudden death. Studies have found that paeoniflorin (PF) has a protective effect on coronary artery disease (CAD). However, the mechanism of PF in MIR has not been fully investigated. The purpose of this study was to investigate the functional role of PF in H9c2 cells subjected to hypoxia/reoxygenation (H/R). Here, PF treatment enhanced cell viability in H/R-stimulated H9c2 cells. In H9c2 cells, PF treatment reduced the formation of reactive oxygen species (ROS) induced by H/R. In H/R-stimulated H9c2 cells, PF also increased the activity of antioxidant enzymes such as superoxide dismutase and glutathione peroxidase. Furthermore, PF protected H9c2 cells against H/R-induced apoptosis, as demonstrated by increased Bcl-2 expression, decreased Bax expression, and decreased caspase-3 activity. Furthermore, PF increased the levels of p-AMPK and nuclear Nrf2 expression in response to H/R stimulation. AMPK inhibition, on the other hand, abolished the PF-mediated increase in Nrf2 signaling and the cardiac-protective effect in H9c2 cells exposed to H/R. These data suggest that PF protected H9c2 cells against H/R-induced oxidative stress and apoptosis through modulating the AMPK/Nrf2 signaling pathway. Our findings support the therapeutic potential of PF in myocardial I/R damage.

Funder

Yunnan Provincial Clinical Medical Center of Cardio-Cerebral Vascular Diseases

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Reference30 articles.

1. Engineering Extracellular Matrix Proteins to Enhance Cardiac Regeneration After Myocardial Infarction

2. Presence and clinical significance of myocardial ischemia during aerobic exercise training in patients with ischemic burden;M. Milani;European Journal of Preventive Cardiology,2021

3. Remifentanil preconditioning alleviates myocardial ischemia/reperfusion injury in rats via activating Jagged-1/Notch signaling pathway;D. Cao;Bioscience Reports,2021

4. The study of myocardial ischemia-reperfusion treatment through computational modelling;M. Mokhtarudin;Journal of Theoretical Biology,2020

5. The role of small extracellular vesicles in cerebral and myocardial ischemia—molecular signals, treatment targets, and future clinical translation;X. Zheng;Stem Cells,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3