Local Mutational Pressures in Genomes of Zaire Ebolavirus and Marburg Virus

Author:

Khrustalev Vladislav Victorovich1,Barkovsky Eugene Victorovich1,Khrustaleva Tatyana Aleksandrovna2

Affiliation:

1. Department of General Chemistry, Belarusian State Medical University, Dzerzinskogo 83, 220116 Minsk, Belarus

2. Laboratory of Cellular Technologies, Institute of Physiology of the National Academy of Sciences of Belarus, Academicheskaya 28, 220072 Minsk, Belarus

Abstract

Heterogeneities in nucleotide content distribution along the length of Zaire ebolavirus and Marburg virus genomes have been analyzed. Results showed that there is asymmetric mutational A-pressure in the majority of Zaire ebolavirus genes; there is mutational AC-pressure in the coding region of the matrix protein VP40, probably, caused by its high expression at the end of the infection process; there is also AC-pressure in the 3′-part of the nucleoprotein (NP) coding gene associated with low amount of secondary structure formed by the 3′-part of its mRNA; in the middle of the glycoprotein (GP) coding gene that kind of mutational bias is linked with the high amount of secondary structure formed by the corresponding fragment of RNA negative (−) strand; there is relatively symmetric mutational AU-pressure in the polymerase (Pol) coding gene caused by its low expression level. In Marburg virus all genes, including C-rich fragment of GP coding region, demonstrate asymmetric mutational A-bias, while the last gene (Pol) demonstrates more symmetric mutational AU-pressure. The hypothesis of a newly synthesized RNA negative (−) strand shielding by complementary fragments of mRNAs has been described in this work: shielded fragments of RNA negative (−) strand should be better protected from oxidative damage and prone to ADAR-editing.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Biochemistry, Genetics and Molecular Biology (miscellaneous),Biomedical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3