Microstructure, Strength, and Fracture Topography Relations in AISI 316L Stainless Steel, as Seen through a Fractal Approach and the Hall-Petch Law

Author:

Hilders Oswaldo Antonio1,Zambrano Naddord2,Caballero Ramón3

Affiliation:

1. Department of Physical Metallurgy, School of Metallurgical Engineering and Materials Science, Central University of Venezuela, Apartado 47514, Los Chaguaramos, Caracas 1041-A, Distrito Capital, Venezuela

2. Foundation for Professional Development, The Venezuelan College of Engineering, Caracas 1050, Venezuela

3. Failure Analysis Laboratory, School of Metallurgical Engineering and Materials Science, Central University of Venezuela, Apartado 47514, Los Chaguaramos, Caracas 1041-A, Distrito Capital, Venezuela

Abstract

The influence of the fracture surface fractal dimension DF and the fractal dimension of grain microstructure DM on the strength of AISI 316L type austenitic stainless steel through the Hall-Petch relation has been studied. The change in complexity experimented by the net of grains, as measured by DM, is translated into the respective fracture surface irregularity through DF, in such a way that the higher the grain size (lower DM values) the lower the fracture surface roughness (lower values of DF) and the shallower the dimples on the fractured surfaces. The material was heat-treated at 904, 1010, 1095, and 1194°C, in order to develop equiaxed grain microstructures and then fractured by tension at room temperature. The fracture surfaces were analyzed with a scanning electron microscope, DF was determined using the slit-island method, and the values of DM were taken from the literature. The relation between grain size, DM, mechanical properties, and DF, developed for AISI 316L steel, could be generalized and therefore applied to most of the common micrograined metal alloys currently used in many key engineering areas.

Funder

Central University of Venezuela

Publisher

Hindawi Limited

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3