Effect of Selected Nanospheres on the Mechanical Strength of Lime-Stabilized High-Plasticity Clay Soils

Author:

Ghorbani Ali1ORCID,Hasanzadehshooiili Hadi1ORCID,Mohammadi Mostafa1,Sianati Fariborz2,Salimi Mahdi1,Sadowski Lukasz3ORCID,Szymanowski Jacek3

Affiliation:

1. Department of Civil Engineering, Faculty of Engineering, University of Guilan, Rasht, Guilan, Iran

2. Pardis Branch, University of Guilan, Rasht, Guilan, Iran

3. Faculty of Civil Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 37, 50-370 Wroclaw, Poland

Abstract

The proper design of protective structures may start from improving the characteristics of soils. In order to obtain reasonable safety criteria, several research studies have recently been dedicated to enhancing complex civil engineering structural systems with the use of nanotechnology. Thus, the following paper investigates the effect of nanospheres, including nanosilica (nano-SiO2) and nano zinc oxide (nano-ZnO), on lime-stabilized high-plasticity clay soil. For this purpose, unconfined compressive strength (UCS) and California bearing ratio (CBR) tests were performed on samples. The results showed that the use of the selected nanospheres greatly increased the UCS of the samples compared to untreated soil. The UCS value of samples containing 6% lime and 1.5% nano-ZnO after 28 days of treatment increased by 5-fold compared to the UCS of untreated samples. In addition, the samples containing 6% lime and 2% nano-SiO2, with similar curing conditions, experienced a 5.3-fold increase in their UCS value compared to the untreated samples. These compounds were considered as the optimal amounts and showed the highest mechanical strength in both UCS and CBR tests. The same trend was achieved in the CBR test, in which the CBR value for the optimal mixtures containing nano-ZnO and nano-SiO2 was 14.8 and 16.6 times higher than that of high-plasticity clay soil, respectively. Finally, the results obtained from scanning electron microscopy (SEM) analysis revealed that the nanospheres caused a dense and compact matrix to form in the soil, which led to the enhancement of the mechanical strength of the treated samples.

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3