Affiliation:
1. Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
Abstract
Ultrafine carbon fibers with a nanoporous structure were fabricated by the template method using silica nanoparticles (NPs) embedded in fibers of approximate diameter 500 nm, electrospun from an aqueous solution of polyvinyl alcohol,CoCl2, silica NPs, andN,N-dimethylformamide. Black, conductive fibers were obtained by heat treatment in air and a chemical vapor deposition reaction under methanol vapor for more than 5 h. Transmission electron microscopy (TEM) demonstrated that the fabricated fibers after silica removal had a porous structure originating from 15 nm diameter silica NPs. Energy dispersive X-ray analysis combined with TEM confirmed the removal of silica from the fibers by NaOH treatment at 80°C. Total surface area and total pore volume of the fibers after silica removal, determined by nitrogen adsorption measurement, were 318 m2/g and 1.67 cm3/g, respectively. The sheet resistivities of the fabricated fibers were 35.1–477 Ω/□, which were relatively high, compared with that reported for polyacrylonitrile-based fibers carbonized at 800°C. D and G bands detected in the Raman spectrum of the NaOH-treated fibers showed that the prepared carbon fibers were more crystalline than natural carbonaceous materials.
Funder
Kansai Research Foundation for Technology Promotion, Japan
Subject
General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献