Mechanical Effects of Solid Water on the Particle Skeleton of Soil: Mechanism Analysis

Author:

Duan Xiaomeng12ORCID

Affiliation:

1. Institute of Geotechnical Engineering, Yango University, Fuzhou 350015, China

2. College of Civil Engineering, Yango University, Fuzhou 350015, China

Abstract

It is generally accepted that the adsorbed water layer on the surface of the mineral particle has significant effects on the mechanical properties of soils. By defining the concepts of “solid water” and “particle skeleton” after a brief review on adsorbed water, therefore, the mechanical mechanism about how solid water affects the deformation and strength of particle skeleton is theoretically clarified, which could be the physical basis of the reasonability of two assumptive conditions for effective stress equation. Considering solid water as a two-dimensional liquid with appreciable normal strength and lubricity, if soil particles are always wrapped by solid-water layer, the only mechanical effect due to water pressure is to compress particles; while if the interparticle solid water could be extruded undergoing enough force with suitable confinement, the mechanical effects due to increasing water pressure are not only to compress particles more but also to enhance interparticle friction because the indirect interparticle contact could be changed into direct contact to consequently alter the interparticle friction. Because solid water is not likely to be extruded by pressure alone, if the particle compression is negligible relative to the soil-mass compression, two assumptive conditions for effective stress equation are reasonable. Moreover, a simple monitoring test on water content is conducted to certify that the solid-water layer should always exist in soils under ambient conditions, so the ordinarily oven-dried soil samples used in conventional geotechnical tests carried out under ambient conditions could be just “nominally dry” samples with the effects due to solid water.

Funder

China Scholarship Council

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3