An Analysis of the Gear Meshing Characteristics of the Main Planetary Gear Trains of Helicopters Undergoing Shafting Position Changes

Author:

Xuejun Li1ORCID,Lingli Jiang1ORCID,Dengrong Hua2,Daoxuan Yin2,Dalian Yang2ORCID

Affiliation:

1. School of Mechatronic Engineering and Automation, Foshan University, Foshan 528000, China

2. Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China

Abstract

The complex three-shaft three-reducer structural designs of helicopter transmission systems are prone to changes in the relative positions of shafting under the conditions of main rotor and tail rotor loads. These changes will affect the transmission characteristics of the entire transmission system. In this study, the planetary gear trains of helicopters were examined. Due to the fact that these structures are considered to be the most representative structures of the main reducers of helicopters, they were selected as the study objects for the purpose of examining the meshing characteristics of planetary gear trains when the relative positions of the shafting changed due to the position changes of the main rotor shafts under variable load conditions. It was found that by embedding the comprehensive time-varying meshing stiffness values of the main rotor shafts at different positions, a dynamic model of the relative position changes of the planetary gear trains could be established. Then, combined with the multibody dynamics software, the meshing characteristics of the sun gears, and the planetary gears, the planetary gears and the inner ring gears were simulated and analyzed under different inclinations and offsets of the shafting. The results obtained in this study revealed the following: (1) the average meshing force of the gears increased with the increases in the angle inclinations, and the meshing force between the sun gears and the planetary gears increased faster than the meshing force between the planetary gears and the inner ring gears. It was observed that during the changes in the shafting tilt positions, obvious side frequency signals had appeared around the peak of the meshing frequency in the spectrum. Then, with the continuous increases in the tilt position, the peak was gradually submerged; (2) the average meshing force of the gears increased with the increases in the offset, and the increasing trend of the meshing force between the sun gears and the planetary gears was similar to that observed between the planetary gears and the inner ring gears. It was found that when the shafting offset position changed, there were obvious first and second frequency doubling in the spectrum; (3) the mass center orbit radii of the sun gears increased with the increases in the shafting position changes, and the changes in the angular tilt position were found to have greater influencing effects on the mass center orbit radii of the sun gears than the changes in the offset positions. This study’s research findings will provide a theoretical basis for future operational status monitoring of the main transmission systems of helicopters and are of major significance for improvements in the operational stability of helicopter transmission systems, which will potentially ensure safe and efficient operations.

Funder

Aeronautical Science Foundation of China

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3