An Experimental Study of the Influence of Hand-Arm Posture and Grip Force on the Mechanical Impedance of Hand-Arm System

Author:

Zhang Wenjie12,Wang Qichao12,Xu Zheng12,Xu Hongmei12ORCID,Li Hang12,Dong Jiajun12,Ma Xinbo3

Affiliation:

1. College of Engineering, Huazhong Agricultural University, Wuhan 430070, China

2. Key Laboratory of Agricultural Equipment in Mid-lower Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China

3. School of Intelligent Manufacturing, Nanyang Institute of Technology, Nanyang 473004, China

Abstract

In order to investigate the effects of hand-arm posture, grip force, push force, and vibration excitation intensity on the mechanical impedance of human hand-arm system, a test system with a self-developed vibration handle has been prepared. Based on the testing system, the mechanical impedance of the hand-arm system of seven Chinese adult males were tested and calculated under the random vibration excitation with the frequency of 10–1000 Hz. The results reveal that when the frequency is lower (<40 Hz), the hand-arm system with an elbow angle of 180o produces a higher mechanical impedance; when the frequency ranges from 40 Hz to 100 Hz, the hand-arm system with an elbow angle of 90o generates a higher mechanical impedance; while when the frequency is higher (>100 Hz), the hand-arm posture seems to have no obvious effect on the mechanical impedance. Higher grip or push force would increase the frequency corresponding to the peak value of the mechanical impedance and often correspond to a higher mechanical impedance in a specific frequency range (30–200 Hz). When the frequency is lower (<140 Hz), vibration intensity has certain effects on the mechanical impedance of the hand-arm system. In conclusion, vibration intensity does not directly affect the mechanical impedance, but an increase in grip or push force often causes an increase in mechanical impedance and a higher frequency that corresponds to the peak of mechanical impedance.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference23 articles.

1. Biodynamic Response at the Palm of the Human Hand Subjected to a Random Vibration

2. Clinical analysis of 84 patients with occupational arm vibration disease with peripheral circulatory disorders in the hands;Q. L. Zheng;Chinese Vocational Medicine,2010

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3