Simulation and Optimization for the Staircase Evacuation of a Cruise Ship Based on a Multigrid Model

Author:

Hu Min1ORCID,Cai Wei1ORCID

Affiliation:

1. Green and Smart River-Sea-Going Ship, Cruise Ship and Yacht Research Center, Wuhan University of Technology, Wuhan 430063, China

Abstract

A cruise ship is a large public place, and it is very important to ensure the safety of passengers during the evacuation process in case of an emergency. This paper proposes a method to improve evacuation efficiency on cruise ships by controlling passengers’ density. According to the construction of the staircase, the space of the staircase is divided into the step and landing areas. On the basis of considering the influence of passengers’ view field and moving characteristics of passengers, the moving rules of passengers in two areas are established. Taking staircases of the cruise ship as the evacuation scenario, the evacuation process is simulated by using the established model. From simulation results, it is found that numbers of evacuated passengers between staircases are very unbalanced and too many passengers gather in one staircase, which lead to serious congestion. By controlling passengers’ density in stairs areas, the minimum evacuation time is the optimization objective and the optimization model is established by using the quantum-inspired evolutionary algorithm and genetic algorithm. The optimization results show that the evacuation time is significantly shortened when the passenger’s density on the staircase is kept within an appropriate range, which proves that the evacuation efficiency can be effectively improved by controlling the passengers’ density.

Funder

Ministry of Industry and Information Technology of the People's Republic of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3