Photocatalytic Degradation of Trifluralin in Aqueous Solutions by UV/S2O82− and UV/ZnO Processes: A Comparison of Removal Efficiency and Cost Estimation

Author:

Sadeghi Fatemeh1ORCID,Fadaei Abdolmajid2ORCID,Mohammadi-Moghadam Fazel2ORCID,Hemati Sara2ORCID,Mardani Gashtasb3ORCID

Affiliation:

1. Research Committe, Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran

2. Department of Environmental Health Engineering, School of Public Health, Shahrekord University of Medical Sciences, Shahrekord, Iran

3. Medical Plants and Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran

Abstract

Trifluralin is one of the most widely used herbicides, being accounted as the cause of cancer in human. In the present research, the UV/S2O82− and ZnO/UV processes’ efficiency in the removal of trifluralin was investigated. A lab scale equipped with a UV lamp was applied. The parameters were studied, including initial trifluralin concentration (0.4–1.2 mg/L), contact time (20–60 min), S2O82− concentration (20–60 μM), and ZnO concentration (50–150 mg/L). The remained trifluralin concentration was measured by HPLC. This study proved the trifluralin removal of 92.90 ± 1.6% and 87.91 ± 19.22% for UV/S2O82− and UV/ZnO processes in the best operation conditions (contact time of 60 min, the persulfate concentration of 40 μM, and the ZnO concentration of 100 mg/L). The optimal trifluraline concentrations were 1.2 mg/L and 0.6 mg/L for UV/S2O82− and UV/ZnO processes, respectively. In both processes, the removal efficiency of trifluralin increased significantly with increasing contact time. The findings exhibited that both processes UV/S2O82− and UV/ZnO followed the zero-order kinetic. The electrical energy consumed of UV/S2O82 and UV/ZnO was about 43.95 and 20.41 Kwh/kg, respectively. The results show that UV/S2O82− and ZnO/UV processes were appropriate as the effective treatment method for trifluralin removal. Therefore, it is proposed to study the performance of these processes as an environmentally friendly practice in full scale with real wastewater.

Funder

Shahrekord University of Medical Sciences

Publisher

Hindawi Limited

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3