Affiliation:
1. Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, CAGS, Zhengzhou 450006, China
2. China National Engineering Research Center for Utilization of Industrial Minerals, Zhengzhou 450006, China
3. Key Laboratory of Evaluation and Multipurpose Utilization of Polymetallic Ores Ministry of Natural Resources, Zhengzhou 450006, China
Abstract
In this work, a novel method of bismuth fire assay (Bi-FA) combined with inductively coupled plasma mass spectrometry (ICP-MS) simultaneous determination of ultratrace gold (Au), platinum (Pt), palladium (Pd), ruthenium (Ru), rhodium (Rh), and iridium (Ir) in geologic samples was established. Bismuth oxide (Bi2O3) was used as noble metal elements fire assay collector, and Bi-remaining protection cupellation was employed to generate Bi granule. After the Bi granule was microwave-digested by aqua regia (40%, v/v), 197Au, 195Pt, 106Pd, 101Ru, 103Rh, and 193Ir in the sample solution were determined by ICP-MS. Using Bi as cupellation protector, volatile Ru could be collected effectively and without volatilization loss during microwave digestion and decompression. Moreover, the toxicity of Bi was exceptionally low compared to toxic nickel oxide and lead oxide in nickel sulfide/lead fire assay; thus Bi-FA was a green environmental analysis method. The mineral composition and decomposition character of chromite, black shale, and polymetallic ore were investigated, and pretreatment procedures were optimized for such special samples. Besides, the influence of mass spectrum interference of coexisting elements was discussed. Under the optimal conditions, excellent curve fittings of Au, Pt, Pd, Ru, Rh, and Ir were obtained between 0.01 and 100 ng·mL−1, with the correlation coefficients exceeding 0.9995. The detection limits were from 0.002 ng·g−1 to 0.025 ng·g−1. The developed method was applied to analyze the Chinese Certified Reference Materials (CRMs) and the determined values were in good agreement with the certified values.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献