Affiliation:
1. School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, Jiangsu 214122, China
Abstract
In the era of Industry 4.0, single-view clustering algorithm is difficult to play a role in the face of complex data, i.e., multiview data. In recent years, an extension of the traditional single-view clustering is multiview clustering technology, which is becoming more and more popular. Although the multiview clustering algorithm has better effectiveness than the single-view clustering algorithm, almost all the current multiview clustering algorithms usually have two weaknesses as follows. (1) The current multiview collaborative clustering strategy lacks theoretical support. (2) The weight of each view is averaged. To solve the above-mentioned problems, we used the Havrda-Charvat entropy and fuzzy index to construct a new collaborative multiview fuzzy c-means clustering algorithm using fuzzy weighting called Co-MVFCM. The corresponding results show that the Co-MVFCM has the best clustering performance among all the comparison clustering algorithms.
Funder
Six Talent Peaks Project in Jiangsu Province
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems