Power Prediction of Combined Cycle Power Plant (CCPP) Using Machine Learning Algorithm-Based Paradigm

Author:

Siddiqui Raheel1,Anwar Hafeez1ORCID,Ullah Farman1ORCID,Ullah Rehmat2ORCID,Rehman Muhammad Abdul1,Jan Naveed3ORCID,Zaman Fawad4

Affiliation:

1. Department of Electrical & Computer Engineering, COMSATS University Islamabad-Attock Campus, Pakistan

2. Department of Computer Systems Engineering, University of Engineering and Technology Peshawar, Peshawar, Pakistan

3. Department of Information Engineering Technology, University of Technology Nowshera, KPK, Pakistan

4. Department of Electrical & Computer Engineering, COMSATS University Islamabad, Pakistan

Abstract

Power prediction is important not only for the smooth and economic operation of a combined cycle power plant (CCPP) but also to avoid technical issues such as power outages. In this work, we propose to utilize machine learning algorithms to predict the hourly-based electrical power generated by a CCPP. For this, the generated power is considered a function of four fundamental parameters which are relative humidity, atmospheric pressure, ambient temperature, and exhaust vacuum. The measurements of these parameters and their yielded output power are used to train and test the machine learning models. The dataset for the proposed research is gathered over a period of six years and taken from a standard and publicly available machine learning repository. The utilized machine algorithms are K -nearest neighbors (KNN), gradient-boosted regression tree (GBRT), linear regression (LR), artificial neural network (ANN), and deep neural network (DNN). We report state-of-the-art performance where GBRT outperforms not only the utilized algorithms but also all the previous methods on the given CCPP dataset. It achieves the minimum values of root mean square error (RMSE) of 2.58 and absolute error (AE) of 1.85.

Funder

Austrian Agency for International Cooperation in Education and Research

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3