Malicious Encryption Traffic Detection Based on NLP

Author:

Yang Hao1ORCID,He Qin1ORCID,Liu Zhenyan1ORCID,Zhang Qian2ORCID

Affiliation:

1. School of Computing Science, Chengdu University of Information Technology, Chengdu 610225, China

2. School of Computer Science, University of Nottingham Jubilee Campus, Nottingham NG8 1BB, UK

Abstract

The development of Internet and network applications has brought the development of encrypted communication technology. But on this basis, malicious traffic also uses encryption to avoid traditional security protection and detection. Traditional security protection and detection methods cannot accurately detect encrypted malicious traffic. In recent years, the rise of artificial intelligence allows us to use machine learning and deep learning methods to detect encrypted malicious traffic without decryption, and the detection results are very accurate. At present, the research on malicious encrypted traffic detection mainly focuses on the characteristics’ analysis of encrypted traffic and the selection of machine learning algorithms. In this paper, a method combining natural language processing and machine learning is proposed; that is, a detection method based on TF-IDF is proposed to build a detection model. In the process of data preprocessing, this method introduces the natural language processing method, namely, the TF-IDF model, to extract data information, obtain the importance of keywords, and then reconstruct the characteristics of data. The detection method based on the TF-IDF model does not need to analyze each field of the data set. Compared with the general machine learning data preprocessing method, that is, data encoding processing, the experimental results show that using natural language processing technology to preprocess data can effectively improve the accuracy of detection. Gradient boosting classifier, random forest classifier, AdaBoost classifier, and the ensemble model based on these three classifiers are, respectively, used in the construction of the later models. At the same time, CNN neural network in deep learning is also used for training, and CNN can effectively extract data information. Under the condition that the input data of the classifier and neural network are consistent, through the comparison and analysis of various methods, the accuracy of the one-dimensional convolutional network based on CNN is slightly higher than that of the classifier based on machine learning.

Funder

Sichuan Science and Technology Program

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Reference26 articles.

1. Study data from Wuhan University of Technology update understanding of supercomputing (Ths-idpc: a three-stage hierarchical sampling method based on improved density peaks clustering algorithm for encrypted malicious traffic detection);Computing Supercomputing;Mathematics Week,2020

2. Stand for investigation of the characteristics of screw downloaders

3. Detection of encrypted multimedia traffic through extraction and parameterization of recurrence plots. Science and engineering research center;C. Michele

4. DISTILLER: Encrypted traffic classification via multimodal multitask deep learning

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3