Movement and Protection for Random Shape Rockfalls in Steeply Dipping Coal Seams

Author:

Liu Ming1ORCID,Chen Jie1ORCID

Affiliation:

1. School of Environment and Safety Engineering, Liaoning Petrochemical University, Fushun 113001, China

Abstract

In view of the randomness of rockfalls shape and irregularity of the bottom floor of working face in steeply dipping coal seams (SDCS), it is difficult to accurately simulate rockfall movement, and it is consequently unable to effectively protect against multirockfalls. Therefore, a method for generating random shape rockfalls based on ellipsoid equation is proposed, and a 3D grid model of real bottom floor of working face is established based on the geographic information system data. In order to verify the accuracy and feasibility of the method and 3D model, the trajectory simulated by Rockyfor3D software is compared, and the proposed method and 3D model prove to be effective in simulating rockfall movement more accurately. Then the proposed method and 3D grid model are applied to solve the problem of multirockfalls protection in numerical simulation, and the main factors affecting the structural stress response of protective netting are analyzed by taking three incident modes of parallel heights, ladder parallel, and the same trajectory. In the simulation, it is found out that the trajectory of irregular rockfalls is greatly affected by the shape of rockfall and working face floor; during the process of multiple rockfalls colliding with the protective netting, the peak stress on the protective netting is inversely proportional to both the time interval between each rockfall and the distance between each rockfall. The findings presented in this research contribute to rockfall prediction and protection against rockfall hazards.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Reference34 articles.

1. Theory and practices of fully mechanized longwall mining in steeply dipping coal seam;Y. Wu;Mining Engineering,2013

2. Progress, practice and scientific issues in steeply dipping coal seams fully-mechanized mining;Y. P. Wu;Journal of China Coal Society,2020

3. Research progress on the safe and efficient mining technology of steeply dipping seam;Y. P. Wu;Journal of China Coal Society,2014

4. Criteria of support stability in mining of steeply inclined thick coal seam;J. A. Wang;International Journal of Rock Mechanics and Mining Sciences,2016

5. Monitoring strata behavior due to multi-slicing top coal caving longwall mining in steeply dipping extra thick coal seam

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3