Adaptive Gaussian Incremental Expectation Stadium Parameter Estimation Algorithm for Sports Video Analysis

Author:

Geng Lizhi1ORCID

Affiliation:

1. Department of Physical Education, Heilongjiang Bayi Agricultural University, Daqing 163000, China

Abstract

In this paper, we propose an adaptive Gaussian incremental expectation stadium parameter estimation algorithm for sports video analysis and prediction through the study and analysis of sports videos. The features with more discriminative power are selected from the set of positive and negative templates using a feature selection mechanism, and a sparse discriminative model is constructed by combining a confidence value metric strategy. The sparse generative model is constructed by combining L1 regularization and subspace representation, which retains sufficient representational power while dealing with outliers. To overcome the shortcomings of the traditional multiplicative fusion mechanism, this paper proposes an adaptive selection mechanism based on Euclidean distance, which aims to detect deteriorating models in time during the dynamic tracking process and adopt corresponding strategies to construct more reasonable likelihood functions. Based on the Bayesian citation framework, the adaptive selection mechanism is used to combine the sparse discriminative model and the sparse generative model. Also, different online updating strategies are adopted for the template set and Principal Component Analysis (PCA) subspace to alleviate the drift problem while ensuring that the algorithm can adapt to the changes of target appearance in the dynamic tracking environment. Through quantitative and qualitative evaluation of the experimental results, it is verified that the algorithm proposed in this paper has stronger robustness compared with other classical algorithms. Our proposed visual object tracking algorithm not only outperforms existing visual object tracking algorithms in terms of accuracy, success rate, accuracy, and robustness but also achieve the performance required for real-time tracking in terms of execution speed on the central processing unit (CPU). This paper provides an in-depth analysis and discussion of the adaptive Gaussian incremental expectation stadium parameter estimation algorithm for sports video analysis. Using a variety of county-level algorithms for analysis and multiple solutions to improve the accuracy of the results, we obtain a more efficient and accurate algorithm.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3