A Novel Behavioral Strategy for RoboCode Platform Based on Deep Q-Learning

Author:

Kayakoku Hakan1ORCID,Guzel Mehmet Serdar2ORCID,Bostanci Erkan3ORCID,Medeni Ihsan Tolga4ORCID,Mishra Deepti5ORCID

Affiliation:

1. Aselsan Company, Ankara, Turkey

2. Robotics Laboratory, Computer Engineering Department, Ankara University, Ankara, Turkey

3. SAAT Laboratory, Computer Engineering Department, Ankara University, Ankara, Turkey

4. Ankara Yildirim Beyazit University (AYBU), Ankara, Turkey

5. Department of Computer Science (IDI), NTNU-Norwegian University of Science and Technology, Gjøvik, Norway

Abstract

This paper addresses a new machine learning-based behavioral strategy using the deep Q-learning algorithm for the RoboCode simulation platform. According to this strategy, a new model is proposed for the RoboCode platform, providing an environment for simulated robots that can be programmed to battle against other robots. Compared to Atari Games, RoboCode has a fairly wide set of actions and situations. Due to the challenges of training a CNN model for such a continuous action space problem, the inputs obtained from the simulation environment were generated dynamically, and the proposed model was trained by using these inputs. The trained model battled against the predefined rival robots of the environment (standard robots) by cumulatively benefiting from the experience of these robots. The comparison between the proposed model and standard robots of RoboCode Platform was statistically verified. Finally, the performance of the proposed model was compared with machine learning based-customized robots (community robots). Experimental results reveal that the proposed model is mostly superior to community robots. Therefore, the deep Q-learning-based model has proven to be successful in such a complex simulation environment. It should also be noted that this new model facilitates simulation performance in adaptive and partially cluttered environments.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3