Synthetic Network and Search Filter Algorithm in English Oral Duplicate Correction Map

Author:

Chen Xiaojun1ORCID

Affiliation:

1. Chinese-Russian Institute, Changchun University, Weixing Road 6543, Changchun, Jilin 130000, China

Abstract

Combining the communicative language competence model and the perspective of multimodal research, this research proposes a research framework for oral communicative competence under the multimodal perspective. This not only truly reflects the language communicative competence but also fully embodies the various contents required for assessment in the basic attributes of spoken language. Aiming at the feature sparseness of the user evaluation matrix, this paper proposes a feature weight assignment algorithm based on the English spoken category keyword dictionary and user search records. The algorithm is mainly based on the self-built English oral category classification dictionary and converts the user’s query vector into a user-English-speaking type vector. Through the calculation rules proposed in this paper, the target user’s preference score for a specific type of spoken English is obtained, and this score is assigned to the unrated item of the original user’s feature matrix as the initial starting score. At the same time, in order to solve the problem of insufficient user similarity calculation accuracy, a user similarity calculation algorithm based on “Synonyms Cilin Extended Edition” and search records is proposed. The algorithm introduces “Synonyms Cilin” to calculate the correlation between the semantic items, vocabulary, and query vector in the user query record to obtain the similarity between users and finally gives a user similarity calculation that integrates user ratings and query vectors method. For the task of Chinese grammar error correction, this article uses two methods of predicting the relationship between words in the corpus, Word2Vec and GloVe, to train the word vectors of different dimensions and use the word vectors to represent the text features of the experimental samples, avoiding sentences brought by word segmentation. On the basis of word vectors, the advantages and disadvantages of CNN, LSTM, and SVM models in this shared task are analyzed through experimental data. The comparative experiment shows that the method in this paper has achieved relatively good results.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3