DAM-SE: A Blockchain-Based Optimized Solution for the Counterattacks in the Internet of Federated Learning Systems

Author:

Xuan Shichang1ORCID,Jin Ming1ORCID,Li Xin1ORCID,Yao Zhaoyuan1ORCID,Yang Wu1,Man Dapeng1ORCID

Affiliation:

1. Information Security Research Centre, Harbin Engineering University, Harbin 150001, China

Abstract

The rapid development in network technology has resulted in the proliferation of Internet of Things (IoT). This trend has led to a widespread utilization of decentralized data and distributed computing power. While machine learning can benefit from the massive amount of IoT data, privacy concerns and communication costs have caused data silos. Although the adoption of blockchain and federated learning technologies addresses the security issues related to collusion attacks and privacy leakage in data sharing, the “free-rider attacks” and “model poisoning attacks” in the federated learning process require auditing of the training models one by one. However, that increases the communication cost of the entire training process. Hence, to address the problem of increased communication cost due to node security verification in the blockchain-based federated learning process, we propose a communication cost optimization method based on security evaluation. By studying the verification mechanism for useless or malicious nodes, we also introduce a double-layer aggregation model into the federated learning process by combining the competing voting verification methods and aggregation algorithms. The experimental comparisons verify that the proposed model effectively reduces the communication cost of the node security verification in the blockchain-based federated learning process.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3