TreeBASIS Feature Descriptor and Its Hardware Implementation

Author:

Fowers Spencer1,Desai Alok1ORCID,Lee Dah-Jye1ORCID,Ventura Dan1ORCID,Archibald James1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602, USA

Abstract

This paper presents a novel feature descriptor called TreeBASIS that provides improvements in descriptor size, computation time, matching speed, and accuracy. This new descriptor uses a binary vocabulary tree that is computed using basis dictionary images and a test set of feature region images. To facilitate real-time implementation, a feature region image is binary quantized and the resulting quantized vector is passed into the BASIS vocabulary tree. A Hamming distance is then computed between the feature region image and theeffectively descriptive basis dictionary imageat a node to determine the branch taken and the path the feature region image takes is saved as a descriptor. The TreeBASIS feature descriptor is an excellent candidate for hardware implementation because of its reduced descriptor size and the fact that descriptors can be created and features matched without the use of floating point operations. The TreeBASIS descriptor is more computationally and space efficient than other descriptors such as BASIS, SIFT, and SURF. Moreover, it can be computed entirely in hardware without the support of a CPU for additional software-based computations. Experimental results and a hardware implementation show that the TreeBASIS descriptor compares well with other descriptors for frame-to-frame homography computation while requiring fewer hardware resources.

Publisher

Hindawi Limited

Subject

Hardware and Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hardware Friendly Robust Synthetic Basis Feature Descriptor;Electronics;2019-07-30

2. Telecom Inventory Management via Object Recognition and Localisation on Google Street View Images;2017 IEEE Winter Conference on Applications of Computer Vision (WACV);2017-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3