Affiliation:
1. Department of Rheumatology & Immunology, Changhai Hospital, Second Military Medical University, Shanghai, China
2. Department of Rheumatology & Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang, China
3. Department of Rheumatology & Immunology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
4. Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
Abstract
Objectives. To examine the expressions of IL-17, IL-22, and IL-23 receptors in four osteoblast models and the effects of IL-17, IL-22, and IL-23 on osteoblasts.Methods. Gene expression levels of receptors, alkaline phosphatase (ALP), osteocalcin (OCN), and Runt-related transcription factor 2 (Runx-2), were evaluated by RT-PCR and real-time RT-PCR. Proliferative responses and cell cycle analysis were detected by a CCK-8 assay and flow cytometry, respectively. ALP activity and ALP mass were detected by an ALP activity assay and ALP staining, respectively.Results. In primary osteoblasts, only the IL-17 receptor was expressed. In C2C12, MC3T3-E1, and Saos-2 cells, the genes of IL-17, IL-22, and IL-23 receptors were not detectable. None of IL-17, IL-22, and IL-23 had an obvious effect on the proliferation of primary osteoblasts, but IL-17 exhibited an inhibitory effect on the gene expression of ALP, OCN, and Runx-2. The ALP activity and ALP mass of primary osteoblasts were downregulated by IL-17 treatment in a dose-dependent manner, and IL-17 failed to inhibit BMP-2-induced phosphorylation of Smad.Conclusion. Primary osteoblasts constitutively express IL-17 receptors, but none of C2C12 cells, MC3T3-E1 cells, and Saos-2 cells express any receptors for IL-17, IL-22, and IL-23. IL-17 inhibits BMP-2-induced osteoblast differentiation via the BMP/Smad-independent pathway.
Funder
National Key Basic Research Program of China
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献