Segmentation and Classification of White Blood Cells Using the UNet

Author:

Alharbi Amal H.1,Aravinda C. V.2ORCID,Lin Meng3ORCID,Venugopala P. S.2,Reddicherla Phalgunendra4,Shah Mohd Asif5ORCID

Affiliation:

1. Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

2. N. M. A. M Institute of Technology Nitte, Karkala, India

3. Department of Electronics and Computer Engineering, College of Science and Engineering, Ritsumeikan University, Kyoto 525-8577, Japan

4. University of Central Missouri, 116 W South St, Warrensburg, MO 64093, USA

5. Bakhtar University, Kabul, Afghanistan

Abstract

In the bone marrow, plasma cells are made up of B lymphocytes and are a type of WBC. These plasma cells produce antibodies that help to keep bacteria and viruses at bay, thus preventing inflammation. This presents a major challenge for segmenting blood cells, since numerous image processing methods are used before segmentation to enhance image quality. White blood cells can be analyzed by a pathologist with the aid of computer software to identify blood diseases accurately and early. This study proposes a novel model that uses the ResNet and UNet networks to extract features and then segments leukocytes from blood samples. Based on the experimental results, this model appears to perform well, which suggests it is an appropriate tool for the analysis of hematology data. By evaluating the model using three datasets consisting of three different types of WBC, a cross-validation technique was applied to assess it based on the publicly available dataset. The overall segmentation accuracy of the proposed model was around 96%, which proved that the model was better than previous approaches, such as DeepLabV3+ and ResNet-50.

Funder

Princess Nourah Bint Abdulrahman University

Publisher

Hindawi Limited

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3