A Software-Defined Networking Roadside Unit Cloud Resource Management Framework for Vehicle Ad Hoc Networks

Author:

Li Hongming12ORCID,Ou Dongxiu12ORCID,Rasheed Iftikhar3ORCID,Tu Meiting14

Affiliation:

1. The Key Laboratory of Road and Traffic Engineering, Ministry of Education, School of Transportation Engineering, Tongji University, Shanghai 201804, China

2. Key Laboratory of Railway Industry of Proactive Safety and Risk Control, School of Transportation Engineering, Tongji University, Shanghai 201804, China

3. Department of Information and Communication Engineering, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan

4. College of Automatic, University Paris-Saclay, Saint Aubin, Paris 91190, France

Abstract

Roadside unit (RSU) cloud and its vehicle-to-infrastructure (V2I) connectivity can enable various security, entertainment, and shared mobility applications for vehicles in intelligent transportation systems (ITS) through wireless communications. In this article, the deep programmability of software-defined networking (SDN) is employed to dynamically reconfigure network hosting services and their data forwarding information for effectively meeting the basic shared mobility applications’ needs in vehicle ad hoc networks (VANETs). Multipath is also enabled to forward data flow for balancing network links utilization rate and SDN is thus utilized to achieve the minimum cloud delay with the least number of hosts, which can be summarized as a mixed-integer linear programming (MILP) problem. The joint optimization (JO) algorithm is proposed and in contrast to the two single-objective algorithms which are the delay optimization (DO) algorithm and host optimization (HO) algorithm, respectively. Results show that, for the single-threading instance, the JO and DO algorithms are the same in essence. For the multithreading instance, the JO algorithm generally outperforms the two single-objective optimization algorithms, respectively, under given demands. Furthermore, results also demonstrate that the services should be deployed globally in a distributed manner rather than in the centralized manner for achieving the minimized cloud delay in designing an RSU cloud.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3