Kinematic Reliability Analysis of a 7-DOF Redundant Robot

Author:

Ding Li1ORCID,Gu Jiahui1,Li Ziyi1,Kang Shaopeng1,Ma Rui1

Affiliation:

1. College of Mechanical Engineering, Jiangsu University of Technology, Changzhou 213001, China

Abstract

The kinematic reliability of robots, defined as the probability that the end-effector falls inside the specified safe boundary, is of great significance in predicting the accuracy achieved in reality. This work selects the 7 degrees-of-freedom (7-DOF) redundant robot as an example to conduct reliability analysis by utilizing the envelope method against time-related issues in this work. Since variables in industrial robots are very small relative to their means, the motion error functions are commonly linearized by the first-order Taylor’s formula to simplify calculation, and the failure models in all directions and attitude angles are then established through the probability method over the entire input interval. As a result, the actual accuracy of the robot in each pose component will be displayed, instead of merely considering the position error like other scholars. The principle of the proposed method is to transform a time-dependent problem into a time-independent one with the help of the failure extreme points and endpoints, so as to enhance the operation efficiency under the premise of ensuring accuracy. Finally, the simulation results verify that the relative error of the envelope method is less than 6.0% compared with that of the Monte Carlo simulation method, and the computational efficiency is higher than that of the Monte Carlo method, which demonstrates that the envelope method has better comprehensive performance.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Computer Science,Control and Systems Engineering

Reference34 articles.

1. Intelligent modularized reconfigurable mechanisms for robots: development and experiment;W. Xu;Chinese Journal of Mechanical Engineering = Ji Xie Gong Cheng Xue Bao,2020

2. Intelligent Selective Compliance Articulated Robot Arm robot with object recognition in a multi-agent manufacturing system

3. An adaptive industrial robot spraying planning and control system;Z. Wang

4. On research progress and trend of motion control in industrial robot applications;X. Luo

5. Research of Calibration Method for Industrial Robot Based on Error Model of Position

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3