Exosomal miR-221-3p Derived from Bone Marrow Mesenchymal Stem Cells Alleviates Asthma Progression by Targeting FGF2 and Inhibiting the ERK1/2 Signaling Pathway

Author:

Liu Weike1,Lin Hui1,Nie Wuhui1,Wan Jieting2,Jiang Qian1,Zhang Aimei1ORCID

Affiliation:

1. Department of Pediatrics, Chengyang District People’s Hospital of Qingdao, Qingdao 266000, Shandong, China

2. Department of Haemodialysis, Jimo District People’s Hospital of Qingdao, Qingdao 266000, Shandong, China

Abstract

Exosomes derived from human bone marrow mesenchymal stem cells (BMSCs) play potential protective roles in asthma. However, the underlying mechanisms remain not fully elucidated. Herein, exosomes were isolated from BMSCs, and the morphology, particle size, and exosome marker proteins were identified by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot, respectively. Then airway smooth muscle cells (ASMCs) were treated with transforming growth factor-β1 (TGF-β1) to construct a proliferation model and then incubated with BMSCs-derived exosomes. We found that exosome incubation increased miR-221-3p expression and inhibited proliferation, migration, and the levels of extracellular matrix (ECM) proteins including fibronectin and collagen III. Moreover, FGF2 was identified as a target gene of miR-221-3p. FGF2 overexpression reversed the inhibitory effects of exosomal miR-221-3p on ASMC progression. Besides, the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) is inhibited by exosomal miR-221-3p, which was reversed by FGF2 overexpression. And ERK1/2 signaling activator reversed the effects of exosomal miR-221-3p on ASMC progression. Additionally, an ovalbumin (OVA)-induced asthmatic mice model was established, and exosome treatment alleviated airway hyper-responsiveness (AHR), histopathological damage, and ECM deposition in asthmatic mice. Taken together, our findings indicated that exosomal miR-221-3p derived from BMSCs inhibited FGF2 expression and the ERK1/2 signaling, thus attenuating proliferation, migration, and ECM deposition in ASMCs and alleviating asthma progression in OVA-induced asthmatic mice. Our findings may provide a novel therapeutic strategy for asthma.

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3