Optimization for U-Shaped Steel Support in Deep Tunnels under Coupled Static-Dynamic Loading

Author:

Zuo Yujun1ORCID,Wang Jian1,Dong Longjun2ORCID,Shu Weiwei2,Yu Meilu1,Sun Wenjibin1,Wu Zhonghu3

Affiliation:

1. Mining College, Guizhou University, Guiyang 550025, China

2. School of Resources and Safety Engineering, Central South University, Changsha 410083, China

3. College of Civil Engineering, Guizhou University, Guiyang 550025, China

Abstract

With the effects of high geostress and intensive dynamic disturbances in deep mining, the stability and safety of tunnels are seriously affected. The optimization for U-shaped steel support is of vital significance and can solve the problems of cost reduction and tunnel instability. Based on the perturbation equation, a coupled formula for U-shaped steel and the surrounding rock mass was proposed to evaluate the practical stability of a U-shaped steel support. Through a numerical simulation method, the characteristics of U-shaped steel support can be obtained under coupled static-dynamic loading. Furthermore, the field test was carried out and compared with the numerical simulation, which was discussed. The results show that there will be a stress concentration when the contact area is small. In addition, the concentrated stress will release with the increase in contact area. With the increase in the lateral stress coefficient, the deformation exhibits a downward trend under static loading, indicating that the lateral stress is the dominant force driving the deep geostress activity. The support requirement of this section of surrounding rock can be satisfied by a U-shaped steel group with 1.5 m spacing under dynamic disturbance.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3