Automatic Detection Algorithm of Football Events in Videos

Author:

Jia Yunke1ORCID

Affiliation:

1. School of Physical Education, Liaocheng University, Liaocheng 252000, China

Abstract

The purpose is to effectively solve the problems of high time cost, low detection accuracy, and difficult standard training samples in video processing. Based on previous investigations, football game videos are taken as research objects, and their shots are segmented to extract the keyframes. The football game videos are divided into different semantic shots using the semantic annotation method. The key events and data in the football videos are analyzed and processed using a combination of artificial rules and a genetic algorithm. Finally, the performance of the proposed model is evaluated and analyzed by using concrete example videos as data sets. Results demonstrate that adding simple artificial rules based on the classic semantic annotation algorithms can save a lot of time and costs while ensuring accuracy. The target events can be extracted and located initially using a unique lens. The model constructed by the genetic algorithm can provide higher accuracy when the training samples are insufficient. The recall and precision of events using the text detection method can reach 96.62% and 98.81%, respectively. Therefore, the proposed model has high video recognition accuracy, which can provide certain research ideas and practical experience for extracting and processing affective information in subsequent videos.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Multi-Stage Event Detection Model for Video Datasets Nature-Inspired and Optimized Feature-Based Learning Model;2022 International Conference on Computational Modelling, Simulation and Optimization (ICCMSO);2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3