Affiliation:
1. Laboratoire de Biomathématiques et d’Estimations Forestières, Faculty of Agronomic Sciences, University of Abomey-Calavi, 04 PB 1525, Cotonou, Benin
2. Faculty of Agriculture and Environmental Sciences, Université Evangélique en Afrique (UEA), P. O. Box: 3323, Bukavu, Democratic Republic of the Congo
3. Unité de Recherche en Foresterie et Conservation des Bioressources, Ecole de Foresterie Tropicale, Université Nationale d’ Agriculture, BP 43, Kétou, Benin
Abstract
Machine learning algorithms, especially random forests (RFs), have become an integrated part of the modern scientific methodology and represent an efficient alternative to conventional parametric algorithms. This study aimed to assess the influence of data features and overdispersion on RF regression performance. We assessed the effect of types of predictors (100, 75, 50, and 20% continuous, and 100% categorical), the number of predictors (p = 816 and 24), and the sample size (N = 50, 250, and 1250) on RF parameter settings. We also compared RF performance to that of classical generalized linear models (Poisson, negative binomial, and zero-inflated Poisson) and the linear model applied to log-transformed data. Two real datasets were analysed to demonstrate the usefulness of RF for overdispersed data modelling. Goodness-of-fit statistics such as root mean square error (RMSE) and biases were used to determine RF accuracy and validity. Results revealed that the number of variables to be randomly selected for each split, the proportion of samples to train the model, the minimal number of samples within each terminal node, and RF regression performance are not influenced by the sample size, number, and type of predictors. However, the ratio of observations to the number of predictors affects the stability of the best RF parameters. RF performs well for all types of covariates and different levels of dispersion. The magnitude of dispersion does not significantly influence RF predictive validity. In contrast, its predictive accuracy is significantly influenced by the magnitude of dispersion in the response variable, conditional on the explanatory variables. RF has performed almost as well as the models of the classical Poisson family in the presence of overdispersion. Given RF’s advantages, it is an appropriate statistical alternative for counting data.
Funder
Carnegie Corporation of New York
Subject
Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献