Nanoscale Pore Structure Characterization and Permeability of Mudrocks and Fine-Grained Sandstones in Coal Reservoirs by Scanning Electron Microscopy, Mercury Intrusion Porosimetry, and Low-Field Nuclear Magnetic Resonance

Author:

Zhang Na12ORCID,Zhao Fangfang12,Guo Pingye12ORCID,Li Jiabin2,Gong Weili12,Guo Zhibiao12,Sun Xiaoming12ORCID

Affiliation:

1. State Key Laboratory for Geomechanics and Deep Underground Engineering, Beijing 100083, China

2. School of Mechanics, Architecture and Civil Engineering, China University of Mining and Technology, Beijing 100083, China

Abstract

Porosity and permeability of two typical sedimentary rocks in coal bearing strata of underground coal mines in China, i.e., mudrocks and fine-grained sandstones, were comprehensively investigated by multiple experimental methods. Measured porosity averages of the helium gas porosity (φg), MIP porosity (φMIP), water porosity (φw), and NMR porosity (φNMR) of the twelve investigated rock samples range from 1.78 to 16.50% and the measured gas permeabilities (Kg) range from 0.0003 to 2.4133 mD. Meanwhile, pore types, pore morphologies, and pore size distributions (PSD) were determined by focused ion beam scanning electron microscopy (FIB-SEM), mercury intrusion porosimetry (MIP), and low-field nuclear magnetic resonance (NMR). FIB-SEM image analyses showed that the mineral matrix pores including interparticle (interP) and intraparticle (intraP) pores with varied morphologies are the dominant pore types of the investigated rock samples while very few organic matter (OM) pores were observed. Results of the MIP and the full water-saturated NMR measurements showed that the PSD curves of the mudrock samples mostly present a unimodal pattern and nanopores with pore diameter less than 0.1 μm are their predominant pore type, while the PSD curves of the fine-grained sandstone samples are featured by a bimodal distribution. Furthermore, comparison of the full water-saturated and irreducible-water-saturated NMR measurements indicated that pores in the mudrocks are solely adsorption pores (normally pore size < 0.1 μm) whereas apart from a fraction of adsorption pores, a large part of the pores in the sandstone sample with relatively high porosity are seepage pores (normally pore size > 0.1 μm). Moreover, the PSD curves of NMR quantitatively converted from the NMR T2 spectra by T2Pc and weighted arithmetic mean (WAM) methods are in good agreement with the PSD curves of MIP. Finally, the applicability of three classic permeability estimation models based on MIP and NMR data to the investigated rock samples was evaluated.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3